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Mapping



The Process of Predictive Mapping

Process Discovery
The use of empirical methods for identifying structure in data and forms the 
basis/justification to build or test models:
• Adjust data for censoring/missing values.
• Transform data to the logratio space (alr/clr/ilr).
• The use of different metrics (PCA, t-SNE, ICA, UMAP + others) to observe/discover 

patterns in the data.
• Discovery of processes through empirical analysis (principal component analysis, 

logratio analysis, multidimensional scaling, cluster analysis).
• Determine suitable classes for predictive mapping (e.g. lithologic units).
• Tag classes to sample sites where available using GIS.



The Process of Predictive Mapping
Process Validation
The use of modelled methods for process confirmation:

• Analysis of variance (AOV) to determine which elements or principal components give maximum 
separation of the classes.

• Methods of classification used for prediction (LDA, QDA, NN,  LR, RF + others)

• Classification to determine measures of posterior probability or typicality from which a probability of 
class membership is assigned to each site. Other methods can be used (e.g. Random Forests).

• Spatial analysis to calculate semi-variograms and subsequent kriging (interpolation) to produce 
predictive maps for each class.

Calculate:

• accuracy of prediction for each class and overall accuracy.
• precision - the fraction of true positives/[true + false positives].
• recall - the fraction of true positives/false negatives.
• Estimates of accuracy are derived from Process Validation and based on the confusion matrix 

predicted classes vs. actual classes.



Kimberlite 
Classification

using 
Lithogeochemistry



Local/Camp Scale < 1:50,000
Exploration scale studies and detailed geologic mapping.

Star Kimberlite – Fort a la Corne - Saskatchewan

A

A
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•Lithogeochemical sampling program of drill core from 

a series of kimberlite eruptions.

•Kimberlite mineralogy varies from olivine bearing 

magmas to fractionated magmas contaminated by 

crust.

•Kimberlites analyzed the following oxides/elements 

converted to cation values : 

Si, Ti, Al, Fe, Mg, Ca, Na, K, P, Rb, Nb, Zr, Th, V, Cr, Co, Ni, 

La, Er, Yb, Y, Ga
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PC1-2 = 66%

PC1-4 = 80%
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Process Validation
Classification based on PC1-7 Accuracy/Confusion Matrix

eJF mJF lJF Pense Cantuar

eJF 90.90 0.00 0.00 0.00 9.10

mJF 0.00 96.78 0.00 2.58 0.65

lJF 0.00 3.58 85.71 10.71 0.00

Pense 0.00 2.50 0.00 97.50 0.00

Cantuar 3.45 10.35 0.00 0.00 86.21

•The use of LDA enables the classification, and 
prediction of kimberlite phases that are relatively 
rich in diamonds.



Predictive Lithologic Mapping from 
the Tellus data, Northern Ireland



Tellus Survey
“A” and “S” Sample Sites

“A” zone – 5-20 cm depth

“S” zone – 35-50 cm depth

Surface soil/ A sample (5-20 cm depth)
6862 sites
XRF analysis for major oxides and trace elements on pressed powder pellets 
(xrf) (6783 sites).
ICP (OES/MS) analysis by aqua regia (ar) digestion (6768 sites)
Fire assay for Au, Pd, Pt by ICP-MS

Deep soil/ S sample (35-50 cm depth)
6867 sites
ICP-OES/MS analysis by aqua regia (ar) digestion (6847 sites)
ICP-OES/MS analysis by 4 acid (4a) digestion (6859 sites)
Fire assay for Au, Pd, Pt by ICP-MS



Predictive Mapping
Age Brackets



Age Brackets - Sample Sites



Principal Component Analysis
Colour/Symbol by Age Bracket

PCA Screeplot

Under-sampled &/or
Random Processes

Geochemical/Physical
Processes

Basalt

Granite/Sandstone

Peat



Amalgamation - Fit-for-purpose
• There are cases where groups of elements are highly 

associated (correlated), such as rare earth elements (REE) 
where elements combine in specific lattice sites in minerals.

• These elements can create difficulty in linear algebraic 
methods where collinearity can result in non-unique 
solutions.

• Grouping these elements (amalgamating) reduces the risk of 
collinearity and simplifies the identification of processes.



Amalgamation

• Amalgamation of elements:

• LREE - La, Ce, Pr, Nd

• HREE - Lu, Yb, Er, Ho, Dy, Tb

• Mafic - Fe, Sc, V, Cr

• Feldspar (Cations)- Ba, Na, K,

• Feldspar  (Anions) - Al, Ga



PCA Screeplots



PCA Biplots



Analysis of Variance
Elements (clr) & Principal Components

Many elements (>20) required for a useful
discrimination between classes (Age Brackets)

Only 8 PCs required for a useful
discrimination between classes (Age Brackets)



Linear Discriminant Analysis

Colour=PredictedColour=Actual

Not a significant difference



Classification Accuracy
predicted

true   CzOl CzPl Mes NeoP Pg Pl PlCr PlDv PlOr PlSi

CzOl   11   42   37    6    0    0   56    0    2    0

CzPl   13 1448   74   54    0    9   71    0   21    1

Mes 4   69   57   10    0    0  132    0   58    0

NeoP    6    7    6  736    1   17  189    1   49    1

Pg 0   11    1    5   72    1   10    0   12   12

Pl      0    5    4   90    0   10   34    2   25    0

PlCr 8    8   32  216    1   15 1070    6  172    6

PlDv 1    2    1   95    0    0   35   27  142    1

PlOr 0    1   33   33   40    0   54    5 1117   28

PlSi 0    0    0    1    1    0    2    0   16  148

error rate =  30.93 %

predicted

CzOl CzPl Mes NeoP Pg Pl PlCr PlDv PlOr PlSi

CzOl 7.1 27.3 24.0  3.9  0.0  0.0 36.4  0.0  1.3  0.0

CzPl 0.8 85.6 4.4  3.2  0.0  0.5  4.2  0.0  1.2  0.1

Mes 1.2 20.9 17.3 3.0  0.0  0.0 40.0  0.0 17.6  0.0

NeoP 0.6  0.7  0.6 72.7 0.1  1.7 18.7  0.1  4.8  0.1

Pg 0.0  8.9  0.8  4.0 58.1 0.8  8.1  0.0  9.7  9.7

Pl    0.0  2.9  2.4 52.9  0.0  5.9 20.0  1.2 14.7  0.0

PlCr 0.5  0.5  2.1 14.1  0.1  1.0 69.8 0.4 11.2  0.4

PlDv 0.3  0.7  0.3 31.2  0.0  0.0 11.5  8.9 46.7  0.3

PlOr 0.0  0.1  2.5  2.5  3.1  0.0  4.1  0.4 85.2 2.1

PlSi 0.0  0.0  0.0  0.6  0.6  0.0  1.2  0.0  9.5 88.1

Counts

%



Posterior Probability

• A multivariate distance (Mahalanobis Distance - MD) is 
measure from a given observation (sample site) to the 
centroid of each Age Bracket class. Distances are based 
on the principal components used for the classification.

• The predicted class is assigned based on the shortest 
MD.

• Posterior probabilities are forced fits. An observation 
must belong to one class.



Posterior Probability

Cenozoic BasaltsPaleogene – felsic granitoid rocks



Posterior Probability

Continental redbed facies sandstone & 
mudstoneLacustrine; Clay, sand & lignite



Posterior Probability

Appinite Suite, Granite, granodioriteBasalt, trachyte, syenite & tuff + sediments



Posterior Probability

Paleozoic 
Wackes/Conglomerate/Redbeds/MudstoneBasalt, andesite + sediments



Posterior Probability

Neoproterozoic Pelite/Semi-pelite/PsammitePaleozoic Granitoid/Gabbroic Rocks



Predictive Lithologic Mapping from 
the Tellus data, Northwest Ireland

Gallagher, V., Grunsky, E., Fitzsimons, M., Browne, M., 
Lilburn, S. and Symons, J. (2021), Tellus Border and West 
Stream Water Data Analysis and Interpretation. 
Geological Survey Ireland report.



Evaluation of Tellus Waters Geochemistry 
Northwest Ireland

• Geological Survey of Ireland carried out a 
geochemical survey of surface waters.

• 6,739 stream water sites were sampled and studied.

• Intent to examine the usefulness of surface waters to 
reflect natural and anthropogenic influences.



Predicting Bedrock Lithologies from Tellus 
Waters Geochemistry



Principal Component Analysis

Dominant

Geochemical

/Physical

Processes

Under-sampled &/or

Random Processes



Random Forests Prediction of Rock Type
Waters RF Prediction - Rock Type - PCA

Counts

amphibolite appinite felvolc gabbro granite greywacke limestone mafvolc ogneiss pelite pgneiss quartzite redbed sandstone slate

amphibolite 872 0 0 0 14 13 99 0 0 78 0 5 0 6 0

appinite 8 0 0 0 2 0 0 0 0 0 0 0 0 0 0

felvolc 2 0 0 0 1 4 0 0 0 1 0 0 0 0 0

gabbro 20 0 0 0 7 3 10 0 0 7 0 0 0 1 0

granite 60 0 0 0 318 13 41 0 0 35 0 2 0 7 0

greywacke 19 0 0 0 7 748 93 0 0 4 0 0 0 21 1

limestone 23 0 0 0 2 37 1735 0 0 2 0 0 1 63 0

mafvolc 3 0 0 0 0 10 18 0 0 0 0 0 0 5 0

ogneiss 4 0 0 0 5 1 1 0 0 5 0 0 0 0 0

pelite 242 0 0 0 16 29 61 0 0 489 0 3 0 14 0

pgneiss 35 0 0 0 0 1 20 0 0 7 6 0 0 2 0

quartzite 148 0 0 0 10 8 31 0 0 66 0 55 0 7 0

redbed 18 0 0 0 1 5 36 0 0 17 0 0 23 22 0

sandstone 69 0 0 0 0 22 338 0 0 22 0 0 0 501 0

slate 5 0 0 0 2 34 4 0 0 2 0 0 0 1 3

Accuracy %

amphibolite appinite felvolc gabbro granite greywacke limestone mafvolc ogneiss pelite pgneiss quartzite redbed sandstone slate

amphibolite 80.2 0 0 0 1.3 1.2 9.1 0 0 7.2 0 0.5 0 0.6 0

appinite 80 0 0 0 20 0 0 0 0 0 0 0 0 0 0

felvolc 25 0 0 0 12.5 50 0 0 0 12.5 0 0 0 0 0

gabbro 41.7 0 0 0 14.6 6.2 20.8 0 0 14.6 0 0 0 2.1 0

granite 12.6 0 0 0 66.8 2.7 8.6 0 0 7.4 0 0.4 0 1.5 0

greywacke 2.1 0 0 0 0.8 83.8 10.4 0 0 0.4 0 0 0 2.4 0.1

limestone 1.2 0 0 0 0.1 2 93.1 0 0 0.1 0 0 0.1 3.4 0

mafvolc 8.3 0 0 0 0 27.8 50 0 0 0 0 0 0 13.9 0

ogneiss 25 0 0 0 31.2 6.2 6.2 0 0 31.2 0 0 0 0 0

pelite 28.3 0 0 0 1.9 3.4 7.1 0 0 57.3 0 0.4 0 1.6 0

pgneiss 49.3 0 0 0 0 1.4 28.2 0 0 9.9 8.5 0 0 2.8 0

quartzite 45.5 0 0 0 3.1 2.5 9.5 0 0 20.3 0 16.9 0 2.2 0

redbed 14.8 0 0 0 0.8 4.1 29.5 0 0 13.9 0 0 18.9 18 0

sandstone 7.2 0 0 0 0 2.3 35.5 0 0 2.3 0 0 0 52.6 0

slate 9.8 0 0 0 3.9 66.7 7.8 0 0 3.9 0 0 0 2 5.9

Overall Accuracy 69.73



Random Forests - Prediction



Random Forest Predictive Map



Random Forest Predictive Map





From surface sediment geochemical 
surveys to prediction of major crustal 

blocks

U Mueller1, E C Grunsky2, P de Caritat3 and J 
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1Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
2Department of Earth and Environmental Sciences, University of Waterloo, Canada N2L 3G1 
3Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia



National Geochemical  Survey Australia
(with Patrice de Caritat, Geoscience Australia)

• National Geochemical Survey of Australia

• Geochemical composition (major, minor and trace elements) was determined on 
sediment samples collected as part of the National Geochemical Survey of Australia 
(NGSA) between 2006 and 2011 by Geoscience Australia and all States/NT 
geological surveys (www.ga.gov.au/ngsa). 

• The NGSA collected catchment outlet (similar to floodplain/overbank) sediment 
samples from two depths (0-10 cm, and ~60-80 cm) in the sediment profile at 1186 
sites across Australia. 

• Collected samples were sieved to two grain-size fractions (<2 mm, and <75 μm) and 
analysed geochemically, resulting in four separate data sets (Caritat & Cooper, 
2016). 

• Whole-rock compositional data for 50 elements were used in this study.



Aim
• Australia is composed of crustal blocks reflecting architecture of the 

continent
• National Geochemical Survey of Australia analysed surface regolith 

over continent 
• The objective of this study is to use surface regolith compositional 

data for spatial prediction of membership to the major crustal blocks 
across the Australian continent

• Previous work has shown that the geochemistry of surficial materials 
(lake sediments, glacial till) can be used to define “type” 
compositions for the lithologies with which they represent based on 
statistical classification methods. 



Surface Geology Map Australia



Major Crustal Blocks of Australia
• Classically interpreted from 

deep seismic reflection data 
and potential field 
geophysics.

• Fundamental geological units 
forming a continent, 

• Boundaries often are crustal-
or lithospheric-scale 
discontinuities that may act 
as melt and fluid conduits in 
a mineral system.



Methods
• Treat the geochemical data as compositions and apply logratio 

transforms.
• Compute Minimum/Maximum Autocorrelation Factors (Switzer and 

Green, 1984).
• Apply analysis of variance to MA factors based on MCB classification. 
• Apply linear discriminant analysis to validate and provide a 

classification framework of the MCBs using non- robust estimates 
of covariance.

• Soft indicator kriging to interpolate posterior probabilities derived 
from LDA.

• Derive most likely crustal block and measures of uncertainty.



Classification Accuracy
MCB BOS c/g BOS f/g TOS c/g TOS f/g
MCB01 0.81 0.85 0.87 0.82
MCB02 0.71 0.72 0.74 0.80
MCB03 0.67 0.69 0.67 0.74
MCB04 0.57 0.69 0.72 0.69
MCB05 0.41 0.24 0.42 0.44
MCB06 0.55 0.54 0.40 0.45
MCB07 0.42 0.53 0.53 0.56
MCB08 0.62 0.72 0.69 0.69
MCB10 0.42 0.44 0.46 0.63
MCB11 0.32 0.32 0.30 0.44
MCB12 0.48 0.48 0.39 0.30
MCB13 0.18 0.29 0.21 0.26
MCB14 0.83 0.89 0.94 0.89
MCB15 0.72 0.64 0.60 0.48
MCB16 0.19 0.26 0.23 0.19
MCB18 0.60 0.65 0.60 0.70
MCB19 0.16 0.12 0.04 0.16
MCB20 0.32 0.21 0.26 0.47
MCB21 0.56 0.44 0.49 0.62
MCB22 0.10 0.15 0.15 0.25
MCB23 0.33 0.43 0.29 0.24
MCB24 0.14 0.14 0.29 0.36

Posterior Probabilities, MCB04, MCB02, TOS c/g (left) and BOS f/g (right)



Measure of Uncertainty
• From the estimated posterior probabilities the following measures of 

spatial uncertainty about the allocation of a location to a specific MCB were 
computed: 

• Local classification of uncertainty: 𝜑 𝑥 = 1 −𝑚𝑎𝑥𝑚(𝑝𝑚 𝑥 )

• Local entropy, given by 𝐻 𝑥 = −σ𝑖=1,𝑝𝑖(𝑥)≠0
𝐾 𝑝𝑖(𝑥)ln(𝑝𝑖(𝑥))

• K denotes the number of classes
• The local classification uncertainty attains values from 0 to 1 and is close to 

0 when class membership is reasonably certain. Similarly, the local entropy 
provides a measure of local randomness. The maximum value is given by 
ln𝐾, which is attained when all K MCBs are equiprobable, and its minimum 
value is 0, when the MCB is certain.



Measures of Uncertainty ( 𝝋)



Measures of Uncertainty (Entropy)



In Conclusion …
• Geochemical survey data are well suited for identifying processes associated with mineralogy, weathering, 

transport.

• The use of multi-element geochemistry enables the recognition of processes through combinations of 
elements that reflect mineral stoichiometry. Soils, stream sediments, lithogeochemistry, laterite, etc. all 
have distinct mineral associations and are reflected in the inter-element associations.

• The geospatial association of geochemical survey sites with measures of underlying geology and surficial 
processes record the influence of  igneous, sedimentary, mineralizing processes and the subsequent 
interaction with the biosphere (ecosystem) and climate.

• The use of advanced analytics and machine learning methods enhance the ability to “Discover” and 
“Validate/Predict” processes. 

• The results demonstrated from predictive mapping confirm the capacity of geochemical data to test new 
hypotheses from which new geological/geochemical process maps can be created

• The establishment of training sets (specific lithologies, alteration, soils, ecosystems, landforms, climate) can 
assist in the study and prediction in areas where there is a lack of information.

• Overlap between classes (e.g. lithologies) is expected and the use of posterior probabilities can identify the 
degree of distinctiveness and overlap.

• The use of advanced analytics and machine learning methods provide an objective, repeatable and 
defensible framework from which processes can be identified, predicted and validated.
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